name: Actinobacteriophage_1321 version: 2 date: 2018-09-26 owner: name: Graham Hatfull email: gfh@pitt.edu url: https://www.biology.pitt.edu/person/graham-hatfull description: > This database contains the 1321 manually annotated Actinobacteriophages analyzed in Mavrich & Hatfull 2019. publications: 1: doi: 10.1128/mBio.00971-19 pmid: 31164468 title: > Evolution of Superinfection Immunity in Cluster A Mycobacteriophages authors: > Travis N Mavrich and Graham F Hatfull abstract: > Temperate phages encode an immunity system to control lytic gene expression during lysogeny. This gene regulatory circuit consists of multiple interacting genetic elements, and although it is essential for controlling phage growth, it is subject to conflicting evolutionary pressures. During superinfection of a lysogen, the prophage’s circuit interacts with the superinfecting phage’s circuit and prevents lytic growth if the two circuits are closely related. The circuitry is advantageous since it provides the prophage with a defense mechanism, but the circuitry is also disadvantageous since it limits the phage’s host range during superinfection. Evolutionarily related phages have divergent, orthogonal immunity systems that no longer interact and are heteroimmune, but we do not understand how immunity systems evolve new specificities. Here, we use a group of Cluster A mycobacteriophages that exhibit a spectrum of genetic diversity to examine how immunity system evolution impacts superinfection immunity. We show that phages with mesotypic (i.e., genetically related but distinct) immunity systems exhibit asymmetric and incomplete superinfection phenotypes. They form complex immunity networks instead of well-defined immunity groups, and mutations conferring escape (i.e., virulence) from homotypic or mesotypic immunity have various escape specificities. Thus, virulence and the evolution of new immune specificities are shaped by interactions with homotypic and mesotypic immunity systems. resources: ~